Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed‐scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional‐to‐global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large‐sample attribute datasets strengthens continental‐scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large‐sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales.more » « lessFree, publicly-accessible full text available February 1, 2026
-
To manage water resources and forecast river flows, hydrologists seek to understand how water moves from precipitation, through watersheds, into river channels. However, we lack fundamental information on the spatial distribution and physical controls on global hydrologic processes. This information is needed to provide theoretical support for large-domain model simulations. Here, to address this issue, we present a global, searchable database of 400 research watersheds with published descriptions of dominant hydrologic flow pathways. This knowledge synthesis approach leverages decades of grant funding, fieldwork effort and local expertise. We use the database to test longstanding hypotheses about the roles of climate, biomes and landforms in controlling hydrologic processes. We show that aridity predicts the depth of water flow pathways and that terrain and biomes predict the prevalence of lateral flow pathways. These new data and search capabilities support efficient hypothesis testing to investigate emergent patterns that relate landscape organization to hydrologic function.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Post-fire flooding and debris flows are often triggered by increased overland flow resulting from wildfire impacts on soil infiltration capacity and surface roughness. Increasing wildfire activity and intensification of precipitation with climate change make improving understanding of post-fire overland flow a particularly pertinent task. Hydrologic signatures, which are metrics that summarize the hydrologic regime of watersheds using rainfall and runoff time series, can be calculated for large samples of watersheds relatively easily to understand post-fire hydrologic processes. We demonstrate that signatures designed specifically for overland flow reflect changes to overland flow processes with wildfire that align with previous case studies on burned watersheds. For example, signatures suggest increases in infiltration-excess overland flow and decrease in saturation-excess overland flow in the first and second years after wildfire in the majority of watersheds examined. We show that climate, watershed and wildfire attributes can predict either post-fire signatures of overland flow or changes in signature values with wildfire using machine learning. Normalized difference vegetation index (NDVI), air temperature, amount of developed/undeveloped land, soil thickness and clay content were the most used predictors by well-performing machine learning models. Signatures of overland flow provide a streamlined approach for characterizing and understanding post-fire overland flow, which is beneficial for watershed managers who must rapidly assess and mitigate the risk of post-fire hydrologic hazards after wildfire occurs.more » « less
-
Wastewater discharges and urban land cover dominate urban hydrology signals across England and WalesAbstract Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow.more » « less
-
The protection of headwater streams faces increasing challenges, exemplified by limited global recognition of headwater contributions to watershed resiliency and a recent US Supreme Court decision limiting federal safeguards. Despite accounting for ~77% of global river networks, the lack of adequate headwaters protections is caused, in part, by limited information on their extent and functions—in particular, their flow regimes, which form the foundation for decision-making regarding their protection. Yet, headwater streamflow is challenging to comprehensively measure and model; it is highly variable and sensitive to changes in land use, management and climate. Modelling headwater streamflow to quantify its cumulative contributions to downstream river networks requires an integrative understanding across local hillslope and channel (that is, watershed) processes. Here we begin to address this challenge by proposing a consistent definition for headwater systems and streams, evaluating how headwater streamflow is characterized and advocating for closing gaps in headwater streamflow data collection, modelling and synthesis.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Hydrologic signatures are quantitative metrics that describe streamflow statistics and dynamics. Signatures have many applications, including assessing habitat suitability and hydrologic alteration, calibrating and evaluating hydrologic models, defining similarity between watersheds and investigating watershed processes. Increasingly, signatures are being used in large sample studies to guide flow management and modelling at continental scales. Using signatures in studies involving 1000s of watersheds brings new challenges as it becomes impractical to examine signature parameters and behaviour in each watershed. For example, we might wish to check that signatures describing flood event characteristics have correctly identified event periods, that signature values have not been biassed by data errors, or that human and natural influences on signature values have been correctly interpreted. In this commentary, we draw from our collective experience to present case studies where naïve application of signatures fails to correctly identify streamflow dynamics. These include unusual precipitation or flow regimes, data quality issues, and signature use in human-influenced watersheds. We conclude by providing guidance and recommendations on applying signatures in large sample studies.more » « less
-
Abstract Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and that are derived directly from the data. We compare the learned signatures to classical signatures, interpret their meaning, and use them to build rainfall‐runoff models in otherwise ungauged watersheds. Our model has an encoder–decoder structure. The encoder is a convolutional neural net mapping historical flow and climate data to a low‐dimensional vector encoding, analogous to hydrological signatures. The decoder structure includes stores and fluxes similar to a classical hydrologic model. For each timestep, the decoder uses current climate data, watershed attributes and the encoding to predict coefficients that distribute precipitation between stores and store outflow coefficients. The model is trained end‐to‐end on the U.S. CAMELS watershed data set to minimize streamflow error. We show that learned signatures can extract new information from streamflow series, because using learned signatures as input to the process‐informed model improves prediction accuracy over benchmark configurations that use classical signatures or no signatures. We interpret learned signatures by correlation with classical signatures, and by using sensitivity analysis to assess their impact on modeled store dynamics. Learned signatures are spatially correlated and relate to streamflow dynamics including seasonality, high and low extremes, baseflow and recessions. We conclude that process‐informed ML models and other applications using hydrologic signatures may benefit from replacing expert‐selected signatures with learned signatures.more » « less
-
Abstract This paper presents a taxonomy (hierarchical organization) of hydrological processes; specifically, runoff generation processes in natural watersheds. Over 130 process names were extracted from a literature review of papers describing experimental watersheds, perceptual models, and runoff processes in a range of hydro‐climatic environments. Processes were arranged into a hierarchical structure, and presented as a spreadsheet and interactive diagram. For each process, additional information was provided: a list of alternative names for the same process, a classification into hydrological function (e.g., flux, storage, release) and a unique identifier similar to a hashtag. We hope that the proposed hierarchy will prompt collaboration and debate in the hydrologic community into naming and organizing processes, towards a comprehensive taxonomy. The taxonomy provides a method to label and search hydrological knowledge, thereby facilitating synthesis and comparison of processes across watersheds.more » « less
An official website of the United States government

Full Text Available